Angles and Right Triangles
Angle Basics 
 Animation:  Types of Angles 
 Animation:  Measuring Angles with a Protractor 
 Angle Relationships and Types of Triangles 
 The Measure of the Interior Angles of Overlapping Triangles (No Algebra)
 The Measure of the Interior Angles of Overlapping Triangles (Algebra)
 Identify Complementary, Supplementary and Vertical Angles
 Find the Measure of Complementary, Supplementary and Vertical Angles
 Determine the Complement and Supplement of a Given Angle
 Similar Triangles and Polygons 
 Ex:  Simplifying Square Roots (perfect squares) 
 Ex:  Simplifying Square Roots (not perfect squares) 
 Ex:  Estimating Square Roots with a Calculator 
 The Pythagorean Theorem 
 The Pythagorean Theorem and the Converse of the Pythagorean Theorem 
 Animation:  The Sum of the Interior Angles of a Triangle 
 Working with Degrees, Minutes, and Seconds 
 Convert an Angle in Degrees and Minutes to Degrees Only and Radians
 Convert an Angle in Degrees, Minutes, and Seconds  to Degrees Only and Radians
 Using the TI-84 to Convert Degrees, Minutes, and Seconds to Degrees and Radians
 Using the TI-84 to Convert Degrees to Degree, Minutes, and Seconds and to Radians
 Angles in Standard Position 
 Animation:  Angles in Standard Position
Plot Positive Angles in Radians in Standard Position and Convert to Degrees
Plot Negative Angles in Radians in Standard Position and Convert to Degrees
Plot Positive Angles in Degrees in Standard Position and Convert to Radians
Plot Negative Angles in Degrees in Standard Position and Convert to Radians
Plot Positive Angles in Degrees in Standard Position and Convert to Radians
 Plot Negative Angles in Degrees in Standard Position and Convert to Radians
 Plot Positive Angles in Radians in Standard Position and Convert to Degrees
 Plot Negative Angles in Radians in Standard Position and Convert to Degrees
Ex:  Determine Angles of Rotation
 Find The Measure of Angles in Standard Position (Degrees -360 to 360)
 Determine the Measure of Reference Angles (No Algebra)
 Determine the Measure of Reference Angles (Algebra)
 Determine Reference Angles of Angles Between 0 and 360 Degrees
 Determine Reference Angles of Angles Between -360 and 0 Degrees
 Determine Reference Angles of Angles Given in Radians (Pos and Neg)
 Find Reference Angle and Smallest Pos Angle Given Point on Terminal Side (Q2)
 Find Reference Angle and Smallest Pos Angle Given Point on Terminal Side (Q3)
 Find Reference Angle and Smallest Pos Angle Given Point on Terminal Side (Q4)
 Determine Uncommon Reference Angles of Angles Given in Radians
 Ex:  Determine if Two Angles Are Coterminal 
 Ex:  Determine a Coterminal Angle Between 0 and 360 Degrees 
 Ex:  Determine Positive and Negative Coterminal Angles
 Plot Angles in Standard Position and Determine Expressions for All Coterminal Angles (Degrees)
 Plot Angles in Standard Position and Determine Expressions for All Coterminal Angles (Radians)
 Find a Coterminal Angle from 0 to 360 degrees to a  Given Angle in Degrees (Positive)
 Find a Coterminal Angle from 0 to 360 degrees to a  Given Angle in Degrees (Negative)
 Find a Coterminal Angle from 0 to 2pi Radians to a  Given Angle in Radians (Positive)
 Find a Coterminal Angle from 0 to 2pi Radians to a  Given Angle in Radians (Negative)
Find the Length of One Side of a Triangle Using Two Right Triangles
Find the Length of the Hypotenuse of One Right Triangle Using Two Right Triangles
Use Right Triangle Trig to Approximate the Distance from a Planet to a Moon
Solve a Trigonometric Function Over an Interval: 8cos^3(x)=8cos(x)
Trigonometric Functions Using Right Triangles
Congruent and Similar Triangles 
 Introduction to Trigonometric Functions Using Triangles 
 Find Trig Function Values Using a Right Triangle - Length of Hypotenuse Missing 
 Ex:  Determine What Trig Function Related Specific Sides of a Right Triangle 
 Ex:  Determine Trig Function Value Given a Right Triangle 
 Ex:  Determine the Length of a Side of a Right Triangle Using a Trig Equation 
 30-60-90 and 45-45-90 Reference Triangles 
 Solving 30-60-90 and 45-45-90 Right Triangles 
 Ex: Solve a 30-60-90 Triangle 
 Ex: Solve a 45-45-90 Right Triangle 
 Ex:  Determine the Perimeter of an Equilateral Triangle Given the Height
Trigonometric Function Values Using Angles in Standard Position
Introduction to Trigonometric Function Using Angles in Standard Position 
 Properties of Trig Functions:  Domain, Range, and Sign in each Quadrant 
 Trig Identities:  Reciprocal, Quotient, Pythagorean 
 Determine Trigonometric Function Values on the Calculator 
 Determine the Reference Angle of an Angle Given in Radians (4pi/3 and 11pi/4)
 Determine the Reference Angle of an Angle Given in Radians (11pi/6 and 4)
 Find Angles Given the Reference Angle and Trig Function Value Sign (45)
 Find Angles Given the Reference Angle and Trig Function Value Sign (68)
 Determine Trigonometric Function Values using Reference Angles and Reference Triangles. 
 Ex:  Determine the Reference Angle for a Given Angle 
 Ex:  Determine the Quadrant of the Terminal Side of An Angle Given Trig Function Signs 
 Ex:  Determine the Area of a Triangle Using the Sine Function 
 Find Sine, Cosine, and Tangent Values for 120 Degrees (Reference Triangle and Unit Circle)
 Find Sine, Cosine, and Tangent Values for 225 Degrees (Reference Triangle and Unit Circle)
 Find 6 Trig Function Values of 210 Degrees (Reference Triangle and Unit Circle)
 Find 6 Trig Function Values of 315 Degrees (Reference Triangle and Unit Circle)
 Find Trigonometric Function Values for 0 Degrees or 0 Radians
 Ex:  Determine Trig Function Values Using Reference Triangles 
 Sine and Cosine Values in Radians Using Reference Triangles - Multiplies of pi/6 and pi/3 
 Sine and Cosine Values in Radians Using Reference Triangles - Multiplies of pi/4 
 Ex:  Sine and Cosine Values Using Reference Triangles - Degrees
Determine 6 Trig Function Values Using a Reference Triangle: 150 Degrees (Mult of 30)
Determine 6 Trig Function Values Using a Reference Triangle: -120 Degrees (Mult of -30)
Determine 6 Trig Function Values Using a Reference Triangle: -300 Degrees (Mult of -60)
Determine 6 Trig Function Values Using a Reference Triangle: 225 Degrees (Mult of 45)
Determine 6 Trig Function Values Using a Reference Triangle: -45 Degrees (Mult of -45)
Determine 6 Trig Function Values Using a Reference Triangle: 180 Degrees (Mult of 90)
Determine 6 Trig Function Values Using a Reference Triangle: -270 Degrees (Mult of -90)
Determine 6 Trig Function Values Using a Reference Triangle: 2pi/3 Radians (Mult of pi/3)
Determine 6 Trig Function Values Using a Reference Triangle: -5pi/3 Radians (Mult of -pi/3)
Determine 6 Trig Function Values Using a Reference Triangle: 7pi/6 Radians (Mult of pi/6)
Determine 6 Trig Function Values Using a Reference Triangle: -7pi/6 Radians (Mult of -pi/6)
Determine 6 Trig Function Values Using a Reference Triangle: 5pi/4 Radians (Mult of pi/4)
Determine 6 Trig Function Values Using a Reference Triangle: -5pi/4 Radians (Mult of -pi/4)
Determine 6 Trig Function Values Using a Reference Triangle: 3pi/2 Radians (Mult of pi/2)
Determine 6 Trig Function Values Using a Reference Triangle: -pi Radians (Mult of -pi/2)
Ex:  Find Six Trig Function Values Using Reference Triangles - Negative Degrees 
 Ex:  Find Six Trig Function Values Using Reference Triangles - Mult. of pi/6 
 Ex:  Find Six Trig Function Values Using Reference Triangles - Mult. of pi/4
 Determine 6 Trig Function Values Using Reference Triangles (Radians)
Trigonometric Equation: Use Snell's Law to Determine an Angle of Refractions
Trigonometric Equation: Solve tan^2(x) = 1 Over an Interval and Then Find All Solutions
The Unit Circle
Find Points on the Unit Circle Given Angles in Radians
 Find Angles Given Points on the Unit Circle [0,2pi)
 Find Points on the Unit Circle Given Angles in Degrees (Pos and Neg)
 Relating the Unit Circle and Reference Triangles Using Desmos
 Determine Trigonometric Function Values using the Unit Circle
Ex:  Sine and Cosine Values Using the Unit Circle - Multiples of 30 degrees 
 Ex:  Sine and Cosine Values Using the Unit Circle - Multiples of 30, 45 degrees 
 Ex:  Sine and Cosine Values Using the Unit Circle - Multiples of pi/6 radians 
 Ex:  Sine and Cosine Values Using the Unit Circle - Multiples of pi/4 radians 
 Ex:  Determining Basic Trig Function Values Using The Unit Circle 
 Determine 6 Trig Function Values Using The Unit Circle (Radians)
Determine 6 Trig Function Values Using the Unit Circle: 150 Degrees (Mult of 30)
Determine 6 Trig Function Values Using the Unit Circle: 180 Degrees (Mult of 90)
Determine 6 Trig Function Values Using the Unit Circle: 225 Degrees (Mult of 45)
Determine 6 Trig Function Values Using the Unit Circle: 300 Degrees (Mult of 60)
Determine 6 Trig Function Values Using the Unit Circle: -120 Degrees (Mult of -60)
Determine 6 Trig Function Values Using the Unit Circle: -225 Degrees (Mult of -45)
Determine 6 Trig Function Values Using the Unit Circle: -270 Degrees (Mult of -90)
Determine 6 Trig Function Values Using the Unit Circle: -300 Degrees (Mult of -30)
Determine the Y-coordinate in Quad 2 on the Unit Circle Given an X-coordinate
Determine the Y-coordinate in Quad 4 on the Unit Circle Given an X-coordinate
Determine 6 Trig Function Values Using the Unit Circle: 2pi/3 Radians (Mult of pi/3)
Determine 6 Trig Function Values Using the Unit Circle: 3pi/2 Radians (Mult of pi/2)
Determine 6 Trig Function Values Using the Unit Circle: 5pi/4 Radians (Mult of pi/4)
Determine 6 Trig Function Values Using the Unit Circle: 7pi/6 Radians (Mult of pi/6)
Determine 6 Trig Function Values Using the Unit Circle: -5pi/3 Radians (Mult of -pi/3)
Determine 6 Trig Function Values Using the Unit Circle: -5pi/4 Radians (Mult of -pi/4)
Determine 6 Trig Function Values Using the Unit Circle: -7pi/6 Radians (Mult of -pi/6)
Determine 6 Trig Function Values Using the Unit Circle: -pi Radians (Mult of -pi/2)
Ex:  Determining Trig Function Values Using The Unit Circle
Find the Sine, Cosine and Tangent Function Values Given a Point on the Unit Circle: Fractions
Find the Cosecant, Secant, and Cotangent Function Values Given a Point on the Unit Circle: Fractions 
 Ex: Find a Point on the Unit Circle Given One Coordinate
Determining Trigonometric Function Values and Angles
Ex:  Determine Trig Function Values Given a Point on the Terminal Side of an Angle 
 Ex:  Determine Trig Function Values from Given Information 
 Ex:  Angles that Have the Same Sine and Cosine Function Values 
 Ex:  Find the Point on a Circle Given an Angle and the Radius 
 Determine Trigonometric Function Values Given Sine, Cosine, and Quadrant
 Ex: Find Trig Function Values Given the Cosine Value and Quadrant 
 Ex: Find Trig Function Values Given the Sine Value and Quadrant - Irrational 
 Ex: Find Trig Function Values Given the Tangent Value and Quadrant 
 Given tan(A)=-5/7 and sin(A)>0, Find sin(A) and cos(A)
 Given sin(A)=2/5 and Quadrant of A, Find 5 Trig Function Values
 Find Trig Function Values Given Sine and Quadrant
 Find Sine and Cosine Given Tangent Value and Sign of Sine Value
 Find 5 Trig Function Values Given Tangent Value and the Sign of Sine
 Ex: Find Half Angle Trigonometric Function Values Given Cosecant of an Angle 
 Ex:  Determine Angles that have the same Trig Function Value Using the Unit Circle 
 Ex:  Determine Angles with the Same Trig Function Value 
 Ex:  Angles that Have the Same Sine and Cosine Function Values 
 Ex:  Find the Point on a Circle Given an Angle and the Radius
Determine an Angle in Standard Position That Passes Through a Given Point (Nice Angles in Degrees)
Determine an Angle in Standard Position That Passes Through a Given Point (Nice Angles in Radians)
Determine an Angle in Standard Position That Passes Through a Given Point (Messy Angles in Degrees)
Determine an Angle in Standard Position That Passes Through a Given Point (Messy Angles in Radians)
Robot Maze:  Determine a Path Through a Maze Using Trigonometry and Geometry
Use a Trigonometric Function to Determine a Projectile angle to Hit a Target
Solving Right Triangles
Intro to Inverse Trig Functions to solve right triangles
 Ex:  Determine the Measure of an Angle of a Right Triangle 
 Properties of Trig Functions:  Domain, Range, and Sign in each Quadrant 
 Solving Right Triangles: Part 1:  The Basics 
 Use Tangent to Find the Height of a Building
 Use Tangent to Determine The Length of an Adjacent Side of a Right Triangle
 Use Cosine to Determine The Length of a Hypotenuse of a Right Triangle
 Use Sine to Determine The Length of a Hypotenuse of a Right Triangle
 Use Inverse Sine to Determine an Angle in a Right Triangle
 Use Tangent to Determine The Length of an Adjacent Side of a Right Triangle
 Use Cosine to Determine The Length of a Hypotenuse of a Right Triangle
 Use Sine to Determine The Length of a Hypotenuse of a Right Triangle
 Use Inverse Sine to Determine an Angle in a Right Triangle
 Use Inverse Cosine to Determine an Angle in a Right Triangle
 Use Inverse Tangent to Determine an Angle in a Right Triange
 Solve a Right Triangle Given an Angle and the Hypotenuse 
 Solve a Right Triangle Given an Angle and a Leg 
 Find the Reach of a Ladder - Right Triangle Application 
 Solving Right Triangles:  Part 2:  Applications 
 Ex: Find Height of Building Using Angle of Elevation and Angle of Depression
Find the Distance Between a Lighthouse and Ship Given the Angle of Depression
 Determining an angle and other trig function values given a single trig function value 
 Ex: Solve a Right Triangle Using Inverse Trigonometric Functions
Radian Measure and Applications or Radian Measure
Radian Measure 
 Ex:  Converting Angles in Degree Measure to Radian Measure 
 Ex:  Convert Angles in Radian Measure to Degree Measure 
 Ex:  Determining Coterminal Angles in Radian Measure 
 Ex:  Determine Exact Trig Function Values With the Angle in Radians Using the Unit Circle 
 Ex:  Determine Exact Trig Function Values With the Angle in Radians Using Reference Triangles 
 Ex:  Determine Angles that have the Same Trig Function Value on the Interval [0, 360) 
 Arc Length and Area of a Sector 
 Ex:  Arc Length and Application of Arc Length 
 Ex:  Determine Arc Length of the Earth 
 Ex: Find the Angle that Subtends a Given Arc Length
Given the Arc Length of a Circle, Find the Circumference and Area
Determine the Distance Between Two Cities Using Arc Length
Ex:  Area of a Sector and Area Bounded by a Chord and Arc
Area of Sector: Find the Area Swept by a Windshield Wiper Blade 
 Linear Velocity and Angular Velocity 
 Angular Velocity and RPMs Going 50 MPH
 Determine Angular Velocity, Linear Velocity, and Distance: Ladybug of a Record
 Determine Angular Velocity, Linear Velocity, and Distance: Bicycle Wheel
Angular Velocity and Linear Velocity: Planetary Ring
Angular Velocity and Linear Velocity: A Hamster Running in a Wheel
 Ex:  Determine the Number or Revolutions Per Second of a Car Tire 
 Ex:  Determine Angular and Linear Velocity
Graphing Trigonometric Functions
Graphing the Sine and Cosine Functions 
 Ex:  Graph the Sine Function Using the Unit Circle 
 Animation:  Graphing the Sine Function Using the Unit Circle
 Animation:  Graphing the Cosine Function Using the Unit Circle 
 Animations of the Graphs of Cosine and Sine Using the Unit Circle (Desmos)
 Graphing the Tangent Function 
 Ex:  Graphing the Tangent Function Using the Unit Circle and the Reciprocal Identity 
 Animation:  Graphing the Tangent Function Using the Unit Circle 
 Graphing the Cosecant and Secant Functions 
 Ex:  Graphing the Secant Function Using the Cosine Function 
 Ex:  Graphing the Cosecant Function Using the Sine Function 
 Ex:  Domain of the Secant and Cosecant Functions Using the Unit Circle 
 Graphing the Cotangent Function 
 Graphing Cosine, Sine, and Tangent on the TI84 
 Graphing Secant, Cosecant, and Cotangent on the TI84
 Graphing Cosine, Sine, and Tangent Using Desmos (Degrees)
 Graphing Cosine, Sine, and Tangent Using Desmos (Radians)
 Graphing the secant function using Desmos (degrees)
 Graphing the secant function using Desmos (radians)
 Graphing the cosecant function using Desmos (degrees)
 Graphing the cosecant function using Desmos (radians)
 Graphing the cotangent function using Desmos (degrees)
 Graphing the cotangent function using Desmos (radians)
Graphing Transformations of Trigonometric Functions
Amplitude and Period of Sine and Cosine 
 Horizontal and Vertical Translations of Sine and Cosine
 Characteristics of a Transformation of the Cosine Function (Reflection, No Vertical Shift)
 Characteristics of a Transformation of the Cosine Function (4 Transformations with Reflection)
 Characteristics of a Transformation of the Sine Function (4 Transformations with Reflection)
 Graphing Sine and Cosine with Various Transformations 
 Comparing Forms of Trigonometric Functions: Transformations
 Animation:  Transformations of Sine in the form y = Asin(B(x – D)) + C 
 Exploring Transformations of Sine and Cosine: y=Asin(Bx-C)+D with Desmos
 Exploring Transformations of Sine and Cosine: y=Asin(B(x-C))+D
 Ex: Find the Maximum and Minimum of a Trig Function Using a Graphing Calculator 
 Ex:  Describe the Transformations of a Trig Function from a Graph 
 Describe and Graph a Transformation of the Cosine Function (Period Not Pi)
 Describe and Graph a Transformation of the Cosine Function (Period Pi)
 Describe and Graph a Transformation of the Sine Function (Period Not Pi)
 Describe and Graph a Transformation of the Sine Function (Period Pi)
 Determine the Equation of a Sine Transformation From a Description
 Determine the Equation of a Sine Function in the Form y=Asin(kx)
 Graph a Transformation of The Cosine Function (B=1) (Pos A)
 Graph a Transformation of The Cosine Function (B=1) (Neg A)
 Graph a Transformation of The Cosine Function y=Acos(B(x-D))+C  (Neg A)
 Graph a Transformation of The Cosine Function y=Acos(B(x-D))+C  (Pos A)
 Graph a Transformation of The Sine Function y=Asin(B(x-D))+C  (Neg A)
 Graph a Transformation of The Sine Function y=Asin(B(x-D))+C  (Pos A)
 Ex 1:  Graphing a Transformation of Sine and Cosine 
 Ex 2:  Graphing a Transformation of Sine and Cosine 
 Ex 3:  Graphing a Transformation of Sine and Cosine 
 Ex 4:  Graphing a Transformation of Sine and Cosine 
 Graph a Cosine Transformation in the Form: y=acos(bx+c)+d
 Graph a Sine Transformation in the Form: y=asin(bx+c)+d
 Find an Equation of a Transformed Sine Function: y=asin(bx+c)+d
 Find an Equation of a Transformed Cosine Function: y=acos(bx+c)+d
 Find an Equation of a Transformed Sine Function: y=asin(bx+c)+d (2)
 Find an Equation of a Transformed Cosine Function: y=acos(bx+c)+d (2)
 Ex: Find the Equation of a Transformed Cosine Function - Form: Acos(Bx) 
 Ex: Find the Equation of a Transformed Sine Function - Form: Asin(B(x-D)) 
 Ex: Find the Equation of a Transformed Cosine Function - Form: Acos(Bx)+C 
 The Equation of a Cosine Transformation From a Graph
 Determining the Equations of Sine and Cosine Functions 
 Ex:  Determine the Equation of a Transformed Sine Function From a Graph 
 Ex:  Find a Trig Function from a Table of Values - No Phase Shift 
 Ex:  Find a Trig Function from a Table of Values - With Phase Shift 
 Graphing Tangent and Cotangent over different Periods
Transformation of a Tangent Function: Determine the Period, Phase Shift, and Asymptotes
Determine the Key Characteristics and Graph a Transformation of the Secant Function
Model the Temperature Throughout a Day Using a Transformed Sinusoidal Function
Ex:  Graphing a Transformation of Cosecant Function
Ex:  Graphing the Tangent Function Over a Different Period
Ex:  Graphing a Transformation of the Cotangent Function
Ex:  Graph a Transformation of the Tangent Function (Period and Horizontal Shift)
Describe a Transformation of a Tangent Function: Period, Amplitude, Phase Shift, Vertical Shift, and Range
Ex:  Graph a Transformation of a Secant Function (Period and Horizontal Shift)
Ex: Find the Equation of a Transformed Cosecant Function From The Graph
Describe a Transformation of a Cosecant Function: Period, Amplitude, Phase Shift, Vertical Shift, and Range
Ex: Find the Equation of a Transformed Secant Function From The Graph
 The Equation of a Cotangent Transformation from a Graph
Transformation of a Cotangent Function: Determine the Period, Phase Shift, and Asymptotes
 The Equation of a Secant or Cosecant Transformation from a Graph
 Graph a Secant Transformation in the Form: y=asec(bx+c)+d
 Graph a Cosecant Transformation in the Form: y=acsc(bx+c)+d
 Graph a Tangent Transformation in the Form: y=atan(bx+c)+d
Modeling with Trigonometric Functions
Ex:  Model Daily Temperatures Using a Trig Function
 Model Daily Temperature Using a Cosine Transformation
 Ex: Trigonometric Model -Displacement of a Mass on a Spring
Modeling Daylight Hours With a Sine Function Value: Points of Intersection Using Desmos
Model the Amount of Sea Ice Using a Transformation of the Cosine Function
Model the Length of a Ladder Over a Fence using a Trignometric Function
Reciprocal, Quotient, Negative, and Pythagorean Trigonometric Identities
Properties of Trig Functions:  Domain, Range, and Sign in each Quadrant
 Find Excluded Values of the Domain of Tangent and Cotangent
 Fundamental Identities:  Reciprocal, Quotient, Pythagorean 
 Find an Angle That Shows an Equation is Not an Identity (csc and cot)
 Find an Angle That Shows an Equation is Not an Identity (sine and cosine)
 Cofunction Identities 
 Cofunction Identities for Sine, Tangent, and Cosecant
 Example:  Verify Pythagorean Identities For a Specific Angle 
 Negative Angle identities 
 Ex 1: Simplify a Trigonometric Expression Using Negative Angle Identities 
 Ex 2: Simplify a Trigonometric Expression Using Negative Angle Identities 
 Even and Odd Trigonometric Identities 
 Ex:  Even and Odd Trigonometric Identities 
 Verifying Identities using Basic Identities 
 Simplify Trigonometric Expressions (Basic Products)
 Simplify Trigonometric Expressions (Basic Quotients)
 Simplify Trigonometric Expressions (Quotients I)
 Simplify Trigonometric Expressions (Quotients IIA)
 Simplify Trigonometric Expressions (Quotients IIB)
 Simplify Trigonometric Expressions (Sum of Fractions: sine and cosine)
 Simplify Trigonometric Expressions (Sum of Fractions: sec and tan)
 Simplify Trigonometric Expressions: (Pythagorean Identities)
Simplify a Trigonometric Expression to Cotangent and Cosine by Performing a Substitution
Simplify a Trigonometric Expression to a Single Trigonometric Expression by Performing a Substitution
 Ex 1:  Simplify a Basic Trigonometric Expression 
 Ex 2:  Simplify Trigonometric Expressions 
 Ex 3:  Simplify a Trigonometric Expression 
 Ex 4:  Simplify Trigonometric Expressions - Squared Terms 
 Ex 1: Simplifying a Trigonometric Expression 
 Ex 2: Simplifying a Trigonometric Expression 
 Ex 3: Simplifying a Trigonometric Expression 
 Ex 4: Simplifying a Trigonometric Expression 
 Ex 5: Simplifying a Trigonometric Expression
 Ex: Simplify a Trigonometric Expression: 1/(1+trig)-1/(1-trig)
 Ex: Simplify a Trigonometric Expression: (trig-trig)/(trig-trig^2)
 Ex: Simplify a Trigonometric Expression: (trig+trig*trig)/(trig+trig*trig)
 Ex: Simplify a Trigonometric Expression: (trig+-trig)/(1+trig) (A)
 Ex: Simplify a Trigonometric Expression: (trig+-trig)/(1+trig) (B)
 Ex: Simplify a Trigonometric Expression: (trig+-trig)/(1+trig) (A)
 Ex: Simplify a Trigonometric Expression: (trig+-trig)/(1+trig) (B)
 Ex: Simplify a Trigonometric Expression: (2-trig^2)/trig^2 (A)
 Ex: Simplify a Trigonometric Expression: (2-trig^2)/trig^2  (B)
Sum and Difference Trigonometric Identities
Sum and Difference Identities for Cosine 
 Sum and Difference identities for Sine 
 Sum and Difference Identities for Tangent 
 Ex:  Simplify a Trig Expression Using the Sum and Difference Identities 
 Ex:  Evaluate a Trig Expression Using the Sum and Difference Identities 
 Ex:  Using The Sum and Difference Identity to Determine a Sine Function Value 
 Ex:  Using The Sum and Difference Identity to Determine a Cosine Function Value 
 Ex:  Using The Sum and Difference Identity to Determine a Tangent Function Value 
 Ex: Write the Cosine of a Sum using Sine and Cosine Using a Sum and Difference Angle Identity 
 Ex: Simplify a Trig Expression with Tangent Using a Sum or Difference Angle Identity 
 Ex: Simplify a Trig Expression with Cosecant Using a Sum or Difference Angle Identity 
 Ex: Find sin(a+b) and cos(a-b) given sin(a) and cos(b) 
 Sum and Difference Identities: Evaluate sin(x-90) and cos(180+x)
 Sum and Diff Identities: Find sin(A+B) and sin(A-B) given sin(A) and sin(B)
 Ex: Simplify sin(x+y) - sin(x-y) Using Sum and Difference Identities 
 Ex: Simplify Tan(pi/2 - u) Using Sine and Cosine Difference Identity 
 Ex: Solve a Trigonometric Equation Using a Sum and Difference Angle Identity
Tangent Sum and Difference Identity: Find the Exact Value of tan(5pi/12)
Tangent Sum and Difference Identity: Find the Exact Value of tan(13pi/12)
Using the Cosine Sum or Difference Identity in the Reverse Order
Using the Sine Sum or Difference Identity in the Reverse Order
Double Angle Trigonometric Identities
Trigonometric Double Angle Identities 
 Ex:  Simplify and Evaluate a Trig Expression Using a Double Angle Identity 
 Ex 1:  Determine Double Angle Trig Function Values Given Information 
 Ex 2:  Determine Double Angle Trig Function Values Given Information
 Simplify Trig Expression (1-cos(2x))/sin(x) - Find an Identity
 Simplify Trig Expression (cos x)^4-(sin x)^4
 Simplify Trig Expression: Quotient with Sines and Cosines and Double Angle
 Trig Identities: Find an Identity for (2cos(2x))/(sin(2x)) (Double Angle)
Half Angle Trigonometric Identities
Half Angle Identities 
 Verifying Identities:  Sum, Difference, Double, and Half Angle Identities 
 Ex:  Rewrite a Trig Expression Using a Half Angle Identity 
 Half Angle Identity:  Determine cos(pi/12)=cos(15)
 Half Angle Identity:  Determine sin(pi/8)=sin(22.5)
 Half Angle Identity: Find cos(u/2) Given cot(u)
 Half Angle Identity: Find cos(u/2) Given csc(u)
 Half Angle Identity: Find sin(u/2) Given sin(u)
 Half Angle Identities: Find sin(u/2), cos(u/2), tan(u/2)  Given cos(u) Q3
 Half Angle Identities: Find sin(u/2), cos(u/2), tan(u/2)  Given sin(u) Q3
 Half Angle Identities: Find sin(u/2), cos(u/2), tan(u/2)  Given tan(u) Q4
 Ex:  Determine a Cosine Function Value Using a Half Angle Identity (Radians) 
 Ex:  Determine a Cosine Function Value Using a Half Angle Identity (Degrees) 
 Ex:  Determine a Cosine Function Value Using a Alternative Half Angle Identity (Degrees) 
 Ex:  Determine a Sine Function Value Using a Half Angle Identity (Radians) 
 Ex:  Determine a Sine Function Value Using a Alternative Half Angle Identity (Radians) 
 Ex:  Determine a Sine Function Value Using a Half Angle Identity (Degrees)
 Ex:  Determine a Sine Function Value Using a Alternative Half Angle Identity (Degrees) 
 Ex:  Determine a Tangent Function Value Using a Half Angle Identity 
 
Sum to Product and Product to Sum Trigonometric Identities
Sum to Product and Product to Sum Identities 
 Ex: Sum to Product Trigonometric Identity Involving Cosine 
 Ex: Sum to Product Trigonometric Identity Involving Sine 
 Ex: Product to Sum Trigonometric Identity Involving (sin(x)*sin(y) and cos(x)*cos(y)) 
 Ex: Product to Sum Trigonometric Identity Involving (sin(x)*cos(y) and cos(x)*sin(y)) 
 Ex: Simplify a Trig Expression Using Sum to Product Identities 
 Ex: Solve a Trigonometric Equation Using a Sum to Product Identity
Evaluate Trigonometric Composite Function Expressions with Variables
Inverse Trigonometric Functions
Inverse Functions 
 Animation:  Illustrate why a function must be one-to-one to have an inverse function 
 Animation:  Illustrate why the domain must be restricted 
 Intro to the Inverse Functions of Sine, Cosine, and Tangent 
 Ex: Solve a Right Triangle Using Inverse Trigonometric Functions 
 Ex: Inverse Trig Function Application - Rocket Height 
 Evaluating Expressions and Solving Problems Using Inverse Sine, Cosine, and Tangent 
 Ex: Evaluate Basic Inverse Trig Expressions Involving Arccosine Using the Unit Circle 
 Ex:  Evaluate Basic Inverse Trig Expressions Involving Arcsine Using the Unit Circle 
 Evaluate Inverse Cosine Expressions Using the Unit Circle (Nice Values)
 Evaluate Inverse Sine Expressions Using the Unit Circle (Nice Values)
 Evaluate Inverse Tangent Expressions Using the Unit Circle (Nice Values)
 Evaluate Inverse Cosine Expressions Using the Reference Triangles
 Evaluate Inverse Sine Expressions Using the Reference Triangles
 Evaluate Inverse Tangent Expressions Using the Reference Triangles
 Ex:  Evaluate Expressions Involving Arctangent 
 Ex:  Evaluate Inverse Trig Expressions (Part 1) 
 Ex:  Evaluate Inverse Trig Expressions (Part 2) 
 Ex:  Evaluate Inverse Trig Expressions (Part 3) 
 Ex:  Evaluate Expression Involving Inverse Trig Functions (Part 1) 
 Ex:  Evaluate Expression Involving Inverse Trig Functions (Part 2) 
 Intro to the Inverse Functions of Cosecant, Secant, and Cotangent 
 Evaluate Inverse Cotangent Expressions Using the Unit Circle (Nice Values)
 Evaluate Inverse Cosecant Expressions Using the Unit Circle (Nice Values)
 Evaluate Inverse Secant Expressions Using the Unit Circle (Nice Values)
 Evaluate Inverse Cosecant Expressions Using Reference Triangles
 Evaluate Inverse Cotangent Expressions Using Reference Triangles
 Evaluate Inverse Secant Expressions Using Reference Triangles
 Evaluating Expressions Involving Inverse Cosecant, Secant, and Cotangent 
 Ex:  Evaluate Inverse Cosecant Without a Calculator
Interpreting a Cosecant Function that Model the Distance Between a Comet and Earth
 Ex:  Evaluate Inverse Secant Without a Calculator 
 Ex:  Evaluate an Inverse Cotangent Expression Using a Calculator
 Ex:  Evaluate a Trig Expression with an Inverse Trig Function in Terms of u. 
 Ex:  Evaluate a Trigonometric Expression Containing an Inverse Trig Function - Double Angle 
 Ex:  Evaluate arccot(-3.6) Using a Calculator 
 Ex 1:  Evaluate tan(arcsin(-12/13)) 
 Ex 2:  Evaluate sin(arctan(-7)) 
 Ex 3:  Evaluate sin(arctan(u/3))
 Inverse Trig Function Values of Trig Function Values Using Unit Circle (1st Quad)
 Inverse Trig Function Values of Trig Function Values Using Reference Triangles  (1st Quad)
 Trig Function Values of Inverse Trig Function Values Using Unit Circle (1st Quad)
 Trig Function Values of Inverse Trig Function Values Using Reference Triangles (1st Quad)
 Inverse Trig Function Values of Trig Function Values (Not Nice Angles)
 Inverse Trig Function Values of Trig Function Values (Not Nice Angles, Neg)
 Inverse Trig Function Values of Trig Function Values Using Unit Circle (Nice Angles A)
 Inverse Trig Function Values of Trig Function Values Using Unit Circle (Nice Angles B)
 Trig Function Values of Inverse Trig Function Values (Decimals)
 Trig Function Values of Inverse Trig Function Values Using Unit Circle (Nice Values)
 Inverse Trig Function Values of Trig Function Values Using Ref Triangles (Nice Angles A)
 Inverse Trig Function Values of Trig Function Values Using Ref Tri (Nice Angles B)
 Trig Function Values of Inverse Trig Function Values Using Reference Triangles (Not Q1)
 Evaluate cos(2arcsin(-12/13)) - Reference Triangle
Solving Trigonometric Equations
Ex:  Solve sin(x)=a  Without a Calculator 
 Ex:  Solve cos(x)=a  Without a Calculator 
 Ex:  Solve csc(x)=a  Without a Calculator 
 Ex:  Solve sec(x)=a  Without a Calculator 
 Ex:  Solve cot(x)=a  Without a Calculator 
 Ex:  Solve tan(x)=a  Without a Calculator 
 Solve cos(x)=1/2 (All Solutions):  Degrees
 Solve cos(x)=sqrt(2)/2 (All Solutions):  Radians
 Solve sin(x)=-sqrt(2)/2  (All Solutions):  Degrees
 Solve sin(x)=-sqrt(3)/2 (All Solutions):  Radians
 Solve tan(x)=1 (All Solutions):  Degrees
 Solve tan(x)=-1 (All Solutions):  Radians
 Solve cot(x)=sqrt(3) (All Solutions):  Degrees
 Solve cot(x)=-sqrt(3)/3 (All Solutions):  Radians
Solve a Trigonometric Equation: 2sin^2(x)=1 over the interval [0,2pi)
Ex 1:  Solve a Basic Trig Equation Using the Unit Circle and Reference Triangles 
 Ex 2:  Solve a Basic Trig Equation Using the Unit Circle and Reference Triangles 
 Ex 3:  Solve a Basic Trig Equation Using the Unit Circle and Reference Triangles
Ex:  Solve a Right Triangle Given the Length of Two Sides 
 Ex:  Determine the Height of an Object Using a Trig Equation 
 Ex 1:  Determine an Unknown Length Using Right Triangle Trigonometry 
 Ex 2:  Determine an Unknown Length Using Right Triangle Trigonometry 
 Ex 3:  Determine an Unknown Length Using Right Triangle Trigonometry
 Solve Trigonometric Equations I 
 Solve Trigonometric Equations II 
 Solve Trigonometric Equations III 
 Solving Trig Equations IV Part 1: Half and Multiple Angle Using U-substitution
 Solving Trig Equations IV Part 2: Half and Multiple Angle Using Trig Substitution
 Solve Trigonometric Equations V 
 Solve Trigonometric Equations VI 
 Ex: Solve sin(x)=a Using a Calculator (positive a) 
 Ex: Solve cos(x)=a Using a Calculator (negative a) 
 Ex: Solve sin(x)=a Using a Calculator (negative a) 
 Ex:  Solve cos(x)=a  on [0,2pi) with a Calculator  (positive a) 
 Ex:  Solve tan(x)=a  on [0,2pi) with a Calculator  (negative a) 
 Ex:  Solve Trig Equation:  sin(x) = cos(x) 
 Solve Basic Trig Equations in Radians: tan(x)+1=0 , csc(x)-2=0 (Unit Circle)
 Solve  Trig Equation by Factoring: 2sin^2(x)-sin(x)-1=0 (Radians)
 Solve a Trigonometric Equation by Factoring: Degrees 2cos(x)sin(x)=sin(x)
 Solve a Trig Equation in Quadratic Form Using the Quadratic Formula (Cosine, 4 Solutions)
 Solve a Trig Equation in Quadratic Form Using the Quadratic Formula (Cosine, 2 Solutions)
 Cofunction Identities – Solving Trigonometric Equations 
 Solve Applications with Trigonometric Equations 
 Ferris Wheel Trigonometry Problem 
 An Equation for Simple Harmonic Motion of a Spring
Find a Cosine Function That Models an Oscillating Spring: Harmonic Motion
Determine the Equation for Harmonic Motion Given Amplitude, Period, and Starting Position
Determine the Equation for Harmonic Motion Given Amplitude, Frequency, and Starting Position
Given a Harmonic Motion Equation, Find the Frequency and Correct Graph
Write a Function to Model Damped Harmonic Motion of a Spring Using Cosine
Write a Function to Model Damped Harmonic Motion of a Shock Absorber
Determine When a Spring in Damped Harmonic Motion is in Equilibrium (All times in terms of k)
Perform Sinusoidal Regression Using Desmos: Fish Population
 Ex:  Solve a Trig Equation with an Inverse Trig Function 
 Ex: Solve a Trig Equation for a Variable 
 Ex : Solve a Trigonometric Equation Using a Graphing Calculator 
 Ex: Solve a Trigonometric Equation Using a Calculator (sin(x)=-0.36) 
 Ex 1:  Solving a Trigonometric Equation 
 Ex 2:  Solving a Trigonometric Equation
 Ex 3:  Solving a Trigonometric Equation 
 Ex 4:  Solving a Trigonometric Equation Using a Trig Substitution and Factoring 
 Ex 5:  Solving a Trigonometric Equation Using Factoring 
 Ex:  Solve a Trigonometric Equation Using the Quadratic Formula 
 Ex 1: Solve a Trigonometric Equation Using a Double Angle Identity Substitution 
 Ex 2: Solve a Trigonometric Equation Using a Double Angle Identity Substitution 
 Solve A Trig Equation with a Double Angle (sin(2x)) radians
 Solve A Trig Equation with a Triple Angle (cos(3x)) radians
 Ex 1:  Solving a Trig Equation with a Multiple Angle
 Ex 2:  Solving a Trig Equation with a Multiple Angle
 Solving Trigonometric Equations Using Substitution for Angles 
 Solving Trigonometric Equations Using Identities and Substitution 
Ex 1:  Solve a Trig Equation with Rounded Radian Solutions – Angle Substitution 
 Ex 2:  Solve a Trig Equation with Rounded Radian Solutions - Angle Substitution 
 Ex 3:  Solve a Trig Equation with Rounded Radian Solutions - Angle Substitution with Pi 
 Ex: Solve a Trig Equation Containing Cosecant with Rounded Radian Solutions – Angle Substitution 
 Ex: Solve a Factorable Trig Equation Using Radians - Exact Solutions 
 Ex: Solve a Factorable Trig Equation Requiring Substitution Using Radians - Exact Solutions 
 Ex: Solve a Factorable Trig Equation with Exact and Rounded Radian Solutions 
 Ex:  Solve a Factorable Trig Equation with Rounded Radian Solutions - Quadratic Form
 Ex 1:  Solve a Trig Equation Using a Double Angle Identity 
 Ex 2:  Solve a Trig Equation Using a Double Angle Identity 
 Ex:  Solve 1.2cos(x)=sin(2x) 
 Ex 1:  Solve a Trig Equation Contain Inverse Trig Functions 
 Ex 2:  Solve a Trig Equation Contain Inverse Trig Functions 
 Ex:  Solve a Trig Equation for One Variable in Terms of Another
 Solve a Trig Equation Using Reciprocal Identities:  2cot(x)+csc(x)=0
 Solve a Trig Equation Using Reciprocal Identities: tan^2(x)=4sin^2(x)
 Solve a Trig Equation Using Reciprocal Identities:  2cos^2(x)-cot(x)=0
Use Trigonometric Reciprocal Identities to Determine the Value of a Variable in an Equation (1)
Use Trigonometric Reciprocal Identities to Determine the Value of a Variable in an Equation (2)
Solving Triangles Using the Law of Sines and Law of Cosines
The Law of Sines:  The basics 
 The Law of Sines:  The ambiguous case 
 Use the Law of Sines to Determine a Side Length (AAS)
 The Law of Sines - No Solution (SSA)
 The Law of Sines - One Solution (SSA)
 The Law of Sines - Two Solutions (SSA)
 Use the Law of Sines to Find the Length of a Side of a Triangle After Finding 3rd Angle
 Use the Law of Sines Twice to Find the Length of a Side of a Triangle (Lake Problem)
 The Area of a Triangle Using Sine 
 The Area of a Triangle Using Heron’s Formula 
 The Law of Sines:  Applications I 
 The Law of Sines:  Applications 2 
 Example:  Solve a Triangle Using the Law of Sines (given two sides and an angle)
 Example:  Solve a Triangle Using the Law of Sines (given two angles and one side) 
 Example 1:  Determine an Unknown Length Using the Law of Sines 
 Example 2:  Determine an Unknown Length Using the Law of Sines 
 Example 3:  Determine an Unknown Length Using the Law of Sine (airplane problem) 
 Ex: Law of Sine to Determine a Height of a Building Given Two Angles of Elevation 
 Ex: Law of Sine to Determine a Height of a Satellite Given Two Angles of Elevation 
 New Version: The Law of Cosines
 The Law of Cosines 
 Solve a Triangle Using the Law of Cosines and the Law of Sines
 Use the Law of Cosines to Find the Length of a Side of a Triangle (SAS)
 Use the Law of Cosines to Find the Measure of an Angle of a Triangle (SSS)
 The Law of Cosines:  Applications 
 Example 1:  Application of the Law of Cosines  (width of lake)
 Example 2:  Application of the Law of Cosines  (distance plane travels)
 Example 3:  Application of the Law of Cosines  (diagonal of parallelogram)
 Example 4:  Application of the Law of Cosines (measure of an angle)
 Ex: Find the Area of a Quadrilateral Using Law of Cosines and Heron's Formula 
 Ex:  Find Length of a Support Wire on a Hill Using the Law of Cosines 
 Ex: Law of Cosine Application (Cable Car to Top of Mountain)
Law of Sines: Determine The Number of Possible Triangles Given SSA
Law of Sines and Right Triangle Trigonometry:
Distance and Height of a Satellite
Law of Sines and Right Triangle Trigonometry:
Distance and Height of a UFO
Vectors and Vector Applications
Introduction to Vectors 
 Vector Operations 
 Ex: Find the Sum of Two Vectors From a Graph (2 Dimensions) 
 Ex: Geometric Interpretation of Vector Arithmetic
Determine Which Vectors Are Representations of a Given Vector
Ex: 2D Vector Scalar Multiplication 
 Ex: Find the Unit Vector Given the Graph of a Vector in 2D 
 Ex: Find the Difference of Two Vectors in Component Form 
 Ex: Find the Sum of Two Vectors Given in Linear Combination Form 
 Ex: Find the Difference of Two Vector Given in Linear Combination Form 
 Ex: Find the Difference of Scalar Multiples of Vectors in 2D 
 Understanding Using Magnitude and Direction to Find Component Form of a Vector
 Find the Magnitude and Direction of a Vector: Radians in Quadrant 1
 Find the Magnitude and Direction of a Vector: Radians in Quadrant 2
 Find the Magnitude and Direction of a Vector: Radians in Quadrant 3
 Find the Magnitude and Direction of a Vector: Radians in Quadrant 4
 Find the Magnitude and Direction of a Vector: Degrees and Quadrant 1
 Find the Magnitude and Direction of a Vector: Degrees and Quadrant 2
 Find the Magnitude and Direction of a Vector: Degrees and Quadrant 3
 Find the Magnitude and Direction of a Vector: Degrees and Quadrant 4
 Determine the Magnitude of a Vector Given a Vector in Component Form (Ex 1)
 Determine the Magnitude of a Vector Given a Vector in Component Form (Ex 2)
 Find the Component Form of a Vector by using the Initial and Terminal Points (2D)
 Find the Component Form of a Vector by Analyzing a Graph (2D)
 Find the x-component of a Vector Given the y-component and Magnitude
 Ex 1: Find a Vector in Component Form Given an Angle and the Magnitude (30) 
 Ex 2: Find a Vector in Component Form Given an Angle and the Magnitude (45) 
 Ex 3: Find a Vector in Component Form Given an Angle and the Magnitude (60) 
 Ex 4: Find a Vector in Component Form Given an Angle and the Magnitude (90) 
 Ex 5: Find a Vector in Component Form Given an Angle and the Magnitude (180) 
 Ex: Find the Difference of Scalar Multiples of Vectors in 2D 
 Ex: Find the Magnitude of The Difference of Two Vectors and The Difference of Two Magnitudes 
 Applications of Vectors 
 Exact Component Form of a Vector Given Magnitude and Arctangent (Q1)
 Exact Component Form of a Vector Given Magnitude and Direction (Q2)
 Exact Component Form of a Vector Given Magnitude and Direction (Q3)
 Exact Component Form of a Vector Given Magnitude and Direction (Quadrantal)
 Rounded Component Form of a Vector Given Magnitude and Direction (Q3)
 Ex:  Write a Vector as a Combination of Two Vectors
Ex:  Find the Net Force of Three Vectors and the Opposite Force
Determine the Resultant Velocity Vector, Speed, and Direction of a Plane in Wind (Right Angle)
Find the Resultant Vector of a Force Acting on a Resting Weighted Object
Find the Resultant Vector of Two Force Vectors: Vertial and Horizontal Only
Ex:  Find the Coordinates of a Rotated Point Using Vectors
Ex:  Direction and Speed of a Plane in the Wind Using Vectors 
 Ex: Vector App:  Find an Airplane Direction In  The Wind To Fly Due North 
 Vector App:  Find the Direction of a Ball Thrown From a Car 
 Ex: Vector App - Find the Resultant Vector of a 5 Direction Walk 
 Ex: Vector App - Find the Resultant Vector of a 2 Direction Walk 
 Vector Application Using Law of Sines: Find Direction Angle Needed to Fly Due North in Wind 
 Vector App Using Law of Sines and Cosines: Find  Angle Off Course and Velocity of a Plane in Wind
 Vector App: Find the Horizontal and Downward Force on a Lawnmower Handle
 Vector App: Find the Eastern and Southern Displacement of a Walk
 Find the Horizontal and Vertical Components of a Velocity Vector
 Find the Resultant Force and Direction of 4 Force Vectors
Polar Equations
Polar Coordinates 
 Example:  Identify 4 Possible Polar Coordinates for a Point Using Degrees 
 Polar Coordinates of a Point 4 Ways (Degrees)
 Example:  Identify 4 Possible Polar Coordinates for a Point Using Radians 
 Animation:  Rectangular and Polar Coordinates 
 Example:  Convert a Point in Rectangular Coordinates to Polar Coordinates Using Degrees 
 Example:  Convert a Point in Rectangular Coordinates to Polar Coordinates Using Radians 
 Example:  Convert a Point in Polar Coordinates to Rectangular Coordinates 
 Converting Polar Equations to Rectangular Equations 
 Cartesian and Polar Equation of a Circle from a Graph - Center (0,0)
 Convert a Polar Equation to a Polar Equation (Horizontal and Vertical Line)
 Ex:  Write a Polar Equations of a Line as a Cartesian (Rectangular) Equations 
 Ex:  Write the Standard Form of a Circle From a Graph 
 Ex:  Find the Rectangular and Polar Equation of a Circle From a Graph 
 Ex:  Find the Polar Equation of a Circle With Center at the Origin 
 Ex:  Find the Polar Equation for a Horizontal Line 
 Ex:  Find the Polar Equation for a Line 
 Ex:  Find the Polar Equation for a Parabola 
 Ex:  Find the Rectangular Equation of a Circle from a Polar Equation 
 Ex:  Convert a Rectangular Equation to a Polar Equation 
 Graph Polar Equations I 
 Graph Polar Equations II 
 Animation:  Graph Polar Equations 
 Graphing Polar Equations on the TI84 Graphing Calculator
Complex Numbers
Complex Numbers 
 Complex Number Operations 
 Trigonometric Form of Complex Numbers 
 Product and Quotient of Complex Numbers in Trig Form 
 DeMoivre’s Theorm:  Powers of Complex Numbers in Trig Form 
 Ex: Convert a Complex Number in Cartesian Form to Exponential Form 
 Ex: Convert a Complex Number in Exponential Form to Cartesian Form 
 Ex: Raise a Complex Number in Polar Form to a Power - Demoivre's Theorem 
 Ex: Raise a Complex Number in Polar Form to a Power Using Exponential Form 
 Ex 1: Raise a Complex Number in Cartesian Form to a Power - Demoivre's Theorem 
 Ex 2: Raise a Complex Number in Cartesian Form to a Power - Demoivre's Theorem 
 Roots of Complex Numbers 
 Ex: Find the Square Root of a Complex Number (DeMoivre's Theorem) 
 Complex Solutions (Roots) of Complex Number Using Exponential (Euler) Form: Z^2=2i
 Complex Solutions (Roots) of Complex Number Using Exponential (Euler) Form: Z^2=-2+2sqrt(3)i
 Complex Solutions (Roots) of Complex Number Using Exponential (Euler) Form: Z^3=8i
 Complex Solutions (Roots) of Complex Number Using Exponential (Euler) Form: Z^4=-72+72sqrt(3)i
 Complex Solutions (Roots) of Complex Number Using Exponential (Euler) Form: Z^4=-64
Parametric Equations
 Introduction to Parametric Equations 
 Graphing Parametric Equations in the TI84 
 Converting Parametric Equation to Rectangular Form 
 Ex 1: Write Parametric Equations as a Cartesian Equation 
 Ex 2: Write Parametric Equations as a Cartesian Equation 
 Ex 3: Write Parametric Equations as a Cartesian Equation 
 Ex 4: Write Parametric Equations as a Cartesian Equation 
 Ex: Parametric Equations for an Ellipse in Cartesian Form 
 Ex: Find Parametric Equations For Ellipse Using Sine And Cosine From a Graph 
 Find the Parametric Equations for a Line Segment Given an Orientation 
 Ex 1:  Find the Parametric Equations for a Lissajous Curve 
 Ex 2:  Find the Parametric Equations for a Lissajous Curve 
 Ex 3:  Find the Parametric Equations for a Lissajous Curve 
 Ex 4:  Find the Parametric Equations for a Lissajous Curve 
 Ex:  Point on a Spoke of a Rotating Wheel - Find the Radius
Graphing Calculator
 Ex:  Estimating Square Roots with a Calculator 
 Determine Trigonometric Function Values on the Calculator 
 Graphing Cosine, Sine, and Tangent on the TI84 
 Graphing Secant, Cosecant, and Cotangent on the TI84 
 Ex:  Evaluate an Inverse Cotangent Expression Using a Calculator 
 Ex:  Evaluate arccot(-3.6) Using a Calculator 
 Ex 1:  Solving a Trig Equation Using a Calculator 
 Ex 2:  Solving a Trig Equation Using a Calculator 
 Graphing Polar Equations on the TI84 Graphing Calculator